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Figure S1 (Shiny app available at https://nsaph.shinyapps.io/cause_specific_viz/). Descriptive statistics for 214 16 
disease groups during 2000-2012 among Medicare fee-for-service beneficiaries in the United States. (a) Total 17 
number of hospital admissions, decomposed by discharge destinations (deaths at discharge, discharges to skilled 18 
nursing facilities, discharges to home healthcare services, and other discharge destinations). (b) Distribution of days 19 
of hospitalization across all hospital admission records for each disease group (bars represent means; dots represent 20 
medians; and error bars represent 25th and 75th percentiles). (c) Distribution of inpatient cost (in 2017 USD) across 21 
all hospital admission records for each disease group (bars represent means; dots represent medians; and error bars 22 
represent 25th and 75th percentiles). Disease groups are ranked from highest to lowest total number of hospital 23 
admissions. 24 

Figure S2 (Shiny app available at https://nsaph.shinyapps.io/cause_specific_viz/). Absolute and relative 25 
increase in risk of hospitalization associated with each 1 μg·m-3 increase in lag 0–1 PM2.5 for each of the 214 26 
disease groups. The absolute increases and relative increases for each of the 214 disease groups are presented with 27 
nine model specifications: (1) main model used lag 0-1 PM2.5 as the exposure and adjusted for penalized splines of 28 
lag 0-1 air and dew point temperatures, with error bar representing Bonferroni-corrected 95% confidence interval 29 
(CI); (2) below-guideline model used the same model specification as the main model and was restricted to days 30 
with daily PM2.5 concentration ≤25 μg·m-3 (the current WHO air quality guideline for daily PM2.5), with error 31 
bar representing Bonferroni-corrected 95% CI; (3) sensitivity model 1 used lag 0-1 PM2.5 as the exposure and 32 
adjusted for penalized splines of lag 0-4 air and dew point temperatures, with error bar representing Bonferroni-33 
corrected 95% CI; (4) sensitivity model 2 used lag 0-1 PM2.5 as the exposure and adjusted for penalized splines of 34 
lag 0-5 air and dew point temperatures, with error bar representing Bonferroni-corrected 95% CI; (5) sensitivity 35 
model 3 used lag 0-1 PM2.5 as the exposure and adjusted for penalized splines of lag 0-6 air and dew point 36 
temperatures, with error bar representing Bonferroni-corrected 95% CI; (6) single lag 0 model used lag 0 PM2.5 as 37 
the exposure and adjusted for penalized splines of lag 0-1 air and dew point temperatures, with error bar 38 
representing Bonferroni-corrected 95% CI; (7) single lag 1 model used lag 1 PM2.5 as the exposure and adjusted for 39 
penalized splines of lag 0-1 air and dew point temperatures, with error bar representing Bonferroni-corrected 95% 40 
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CI; (8) single lag 2 model used lag 2 PM2.5 as the exposure and adjusted for penalized splines of lag 0-1 air and dew 1 
point temperatures, with error bar representing Bonferroni-corrected 95% CI; and (9) FDR-corrected model used the 2 
same model specification as the main model, with error bar representing false discovery rate-corrected 95% CI. 3 

Figure S3 (Shiny app available at https://nsaph.shinyapps.io/cause_specific_viz/). Absolute and relative 4 
increase in risk of hospitalization associated with each 1 μg·m-3 increase in lag 0–1 PM2.5 for each of the 122 5 
broader disease groups. The absolute increases and relative increases for each of the 122 broader disease groups 6 
are presented with nine model specifications: (1) main model used lag 0-1 PM2.5 as the exposure and adjusted for 7 
penalized splines of lag 0-1 air and dew point temperatures, with error bar representing Bonferroni-corrected 95% 8 
confidence interval (CI); (2) below-guideline model used the same model specification as the main model and was 9 
restricted to days with daily PM2.5 concentration ≤25 μg·m-3 (the current WHO air quality guideline for daily PM2.5), 10 
with error bar representing Bonferroni-corrected 95% CI; (3) sensitivity model 1 used lag 0-1 PM2.5 as the exposure 11 
and adjusted for penalized splines of lag 0-4 air and dew point temperatures, with error bar representing Bonferroni-12 
corrected 95% CI; (4) sensitivity model 2 used lag 0-1 PM2.5 as the exposure and adjusted for penalized splines of 13 
lag 0-5 air and dew point temperatures, with error bar representing Bonferroni-corrected 95% CI; (5) sensitivity 14 
model 3 used lag 0-1 PM2.5 as the exposure and adjusted for penalized splines of lag 0-6 air and dew point 15 
temperatures, with error bar representing Bonferroni-corrected 95% CI; (6) single lag 0 model used lag 0 PM2.5 as 16 
the exposure and adjusted for penalized splines of lag 0-1 air and dew point temperatures, with error bar 17 
representing Bonferroni-corrected 95% CI; (7) single lag 1 model used lag 1 PM2.5 as the exposure and adjusted for 18 
penalized splines of lag 0-1 air and dew point temperatures, with error bar representing Bonferroni-corrected 95% 19 
CI; (8) single lag 2 model used lag 2 PM2.5 as the exposure and adjusted for penalized splines of lag 0-1 air and dew 20 
point temperatures, with error bar representing Bonferroni-corrected 95% CI; and (9) FDR-corrected model used the 21 
same model specification as the main model, with error bar representing false discovery rate-corrected 95% CI.  22 
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Section 1. Predictors for daily PM2.5 prediction model. 1 

Multiple sources of predictors were fused by the PM2.5 prediction model, including 1 km × 1 km aerosol optical 2 
depth (AOD) and normalized vegetation index data (NDVI) measuring vegetation coverage both retrieved from the 3 
Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua and Terra satellites,1 predicted PM2.5 from a 4 
chemical transport (CTM) model (GEOS-Chem), meteorological data [daily air temperature, relative humidity, wind 5 
speed, and height of planetary boundary layer from the National Center for Environmental Prediction/National 6 
Center for Atmospheric Research (NCEP/NCAR) Reanalysis Project at approximately 32 km × 32 km spatial 7 
resolution2], and land use data (e.g., distance to major roads, emission, and land use pattern). 8 

  9 
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Section 2. Methodology and computation for large conditional logistic regressions with 1 

penalized splines. 2 

The conditional logistic regressions used in the present study adjusted for penalized cubic splines for air and dew 3 
point temperatures. The reasons for choosing penalized splines over regression splines were: 1) regression splines 4 
are known to overfit the data and give wiggly curve estimates;3 and 2) using regression splines often requires 5 
additional sensitivity analyses to explore sensitivity of the coefficient of interest with respect to degrees of freedom 6 
of the splines. Penalized splines imposed smoothness penalties to suppress the wiggly behavior of splines, with 7 
optimal smoothing parameters and thereby optimal degrees of freedom for the air and dew point temperatures 8 
splines selected by maximizing the marginal likelihood.4 This is a data-driven approach, avoiding manual selection 9 
of degrees of freedom for the adjustment.  10 

Due to the large number of inpatient claims, a two-stage fast computation strategy was used to make fitting the large 11 
conditional logistic regressions with penalized splines computationally feasible. We denoted the logarithm of the 12 
conditional likelihood for conditional logistic regression by 𝑙(𝜇1(𝜷), ⋯ , 𝜇𝑛(𝜷)), which depends on each observation 13 
𝑖 = 1, ⋯ , 𝑛 via linear predictors 𝜇𝑖(𝜷), where 14 

𝜇𝑖(𝜷) = 𝛽1𝑋𝑖,1 + 𝛽𝑇′𝑿𝒊,𝑻 + 𝛽𝐷′𝑿𝒊,𝑫, 15 

𝑋𝑖,1is lag 0-1 PM2.5, 𝑿𝒊,𝑻 is the vector of the cubic spline expansion of lag 0–1 air temperature, and 𝑿𝒊,𝑫 is the vector 16 
of the cubic spline expansion of lag 0–1 dew point temperature.5 Each spline expansion has a maximum of nine 17 
degrees of freedom and is centered at zero. 18 

The penalized spline estimator is traditionally defined by  19 

�̂�Trad = argmin
𝜷

[−2𝑙(𝜇1(𝜷), ⋯ , 𝜇𝑛(𝜷)) + 𝜷′𝑺𝝀𝜷] , 20 

where 𝑺𝝀 is a block diagonal penalization matrix diag(0, 𝜆1𝑺𝑻, 𝜆2𝑺𝑫) parametrized by smoothing parameters 𝜆1 and 21 

𝜆2 and 𝑺𝑻 and 𝑺𝑫 are known semi-definite matrices, with 𝜷′𝑺𝝀𝜷 measuring total wiggliness of the two splines.  22 

From a Bayesian perspective, the penalized spline estimator �̂�Trad is the mode of the posterior distribution based on 23 
a likelihood of 𝑓(𝜷|𝐷) ∝ exp[𝑙(𝜇1(𝜷), ⋯ , 𝜇𝑛(𝜷))] and a prior 𝑓𝑝,𝝀(𝜷) ∼ 𝑁(0, 𝑺𝝀

−), where 𝑺𝝀
− is the pseudo inverse 24 

of 𝑺𝝀. The optimal smoothing parameter 𝝀 = (𝜆1, 𝜆2)′ can be selected by maximizing the Laplace approximated 25 
marginal likelihood (LAML) as described in Wood et al. (2016),4 which applies a Laplace approximation to the 26 
marginal likelihood, 27 

�̂�Trad = argmax
𝝀

∫ 𝑓𝑝,𝝀(𝜷)𝑓(𝜷|𝐷)𝑑𝜷 . 28 

Previous work has demonstrated advantages of maximizing LAML over optimizing generalized cross-validation or 29 
Akaike information criterion.3  30 

The gam function in the mgcv R package implements an algorithm to estimate �̂�Trad for conditional logistic 31 
regressions. However, we found that the fitting procedure was extremely slow for disease groups with a large 32 
sample size. To achieve faster computations, we used a novel two-stage approach. When the sample size is large and 33 
the dimension of the spline basis is fixed, the unpenalized coefficient �̃�  is approximately normal according to the 34 
central limit theorem. That is, �̃� ∼ 𝑁(𝜷, �̃�), where �̃� is the variance-covariance estimator for �̃�. Locally, 𝑓(𝜷|𝐷) ≈35 

𝑓(𝜷|𝐷) ∝ exp [−
1

2
(𝜷 − �̃�)

′
�̃�−1(𝜷 − �̃�)]. In the two-stage approach, Stage 1 fits an unpenalized conditional 36 

logistic regression and Stage 2 fits a penalized Gaussian regression, as if we observed a single sample of �̃� 37 
following a Gaussian distribution with its variance-covariance being �̃�, which solves 38 
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�̂�two−stage = argmin
𝜷

[(𝜷 − �̃�)
′

�̃�−1(𝜷 − �̃�) + 𝜷′𝑺𝝀𝜷] , 1 

with the optimal smoothing parameters selected by  2 

�̂�two−stage = argmax
𝝀

∫ 𝑓𝑝,𝝀(𝜷)𝑓(𝜷|𝐷)𝑑𝜷 . 3 

Stage 1 is an unpenalized conditional logistic regression, which can be fitted efficiently using the coxph function in 4 
R. Stage 2 is an optimization based on a sample whose size equals the column dimension of the design matrix, while 5 
by comparison the original problem is based on a sample of size n, which is substantially larger than the column 6 
dimension of the design matrix. Fitting an unpenalized conditional logistic regression in Stage 1 is substantially 7 
faster than its penalized counterpart and further Stage 2 can be completed within a trivial amount of time. As a 8 
result, we achieved a substantially faster computation for conditional logistic regressions with penalized splines 9 
using the two-stage framework. 10 

  11 
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Section 3. Calculation of absolute increase in risk of hospitalization associated with each 1 1 

μg·m-3 increase in lag 0–1 PM2.5. 2 

To calculate the absolute increase in risk of hospitalization associated with each 1 μg·m-3 increase in lag 0–1 PM2.5, 3 
we first calculated the cause-specific baseline rate of hospitalization, denoted by 𝛼𝑐, using the total number of cause-4 
specific admissions during 2000–2012 among Medicare fee-for-service beneficiaries in the United States divided by 5 
the total person-days for fee-for-service beneficiaries. The total person-days for fee-for-service beneficiaries was 6 
132 billion, which was the total number of persons at risk on each day during 2000–2012.  7 

Then we calculated the absolute increase in risk of hospitalization associated with each 1 μg·m-3 increase in lag 0–1 8 
PM2.5 using 𝛼𝑐(1 − exp(−�̂�𝑐)) with a standard error calculation of 𝛼𝑐 exp(−�̂�𝑐) sê𝑐, where 𝛼𝑐 is the cause-specific 9 

baseline rate of hospital admissions, and �̂�𝑐 and sê𝑐 are the coefficient and standard error, respectively, for lag 0–1 10 
PM2.5 extracted from the conditional logistic regression model for disease group c. This approach is consistent with 11 
Di et al. (2017).6 12 
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Section 4. Calculation of cause-specific annual increases in number of deaths at discharge, 1 

number of discharges to skilled nursing facilities, number of discharges to home healthcare 2 
services, and number of other discharge destinations associated with each 1 μg·m-3 increase 3 

in lag 0–1 PM2.5. 4 

For each disease group c, we denoted by �̂�𝑐 the estimated percent increase in risk of hospitalization associated with 5 
each 1 μg·m-3 increase in lag 0–1 PM2.5. We estimated the annual increase in number of hospitalizations associated 6 
with each 1 μg·m-3 increase in lag 0–1 PM2.5 as �̂�𝑐𝑁𝑐, where 𝑁𝑐 is annual averaged number of hospital admissions. 7 

For each type of discharge destinations (denoted by m: 1 stands for death at discharge, 2 for discharge to skilled 8 
nursing facilities, 3 for discharge to home healthcare services, and 4 for other discharge destinations) of disease 9 
group c, we created a case-crossover dataset to estimate percent increase in risk of discharge destination m 10 
conditional on disease group c (�̂�𝑚|𝑐) for each 1 μg·m-3 increase in lag 0–1 PM2.5. 11 

Then for each 1 μg·m-3 increase in lag 0–1 PM2.5, we estimated the annual increase of:  12 

1) number of deaths at discharge as �̂�𝑐�̂�𝑚=1|𝑐𝐷𝑐 if there was significant association between short-term PM2.5 13 
exposure and death at discharge, or as �̂�𝑐𝐷𝑐  if there was no evidence of association between short-term PM2.5 14 
exposure and death at discharge, where Dc is annual average number of deaths at discharge;  15 

2) number of discharges to skilled nursing facilities as �̂�𝑐�̂�𝑚=2|𝑐𝑆𝑐 if there was significant association between short-16 

term PM2.5 exposure and discharge to skilled nursing facilities, or as �̂�𝑐𝑆𝑐 if there was no evidence of association 17 
between short-term PM2.5 exposure and discharge to skilled nursing facilities, where Sc is annual average number of 18 
discharges to skilled nursing homes;  19 

3) number of discharges to home healthcare services as �̂�𝑐�̂�𝑚=3|𝑐𝐻𝑐  if there was significant association between 20 

short-term PM2.5 exposure and discharge to home healthcare services, or as �̂�𝑐𝐻𝑐  if there was no evidence of 21 
association between short-term PM2.5 exposure and discharge to home healthcare services, where Hc is annual 22 
average number of discharges to home healthcare services; and 23 

4) number of other discharge destinations as the difference of the annual increase in number of hospitalizations 24 
(�̂�𝑐𝑁𝑐) and the sum of the three quantities above – i.e., number of deaths at discharge, number of discharges to 25 
skilled nursing facilities, and number of discharges to home healthcare services. 26 

  27 
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Section 5. Calculation of cumulative annual increases in number of hospitalizations, days 1 

hospitalized, and healthcare costs (inpatient and post-acute) associated with each 1 μg·m-3 2 
increase in lag 0–1 PM2.5. 3 

Among the disease groups that were found to be statistically significantly associated with short-term PM2.5 4 
exposure, increase in number of hospitalizations, days hospitalized, and healthcare costs (inpatient and post-acute) 5 
were cumulated for the set of newly identified disease groups and the set of disease groups identified from previous 6 
studies. 7 

For each disease group c, we denoted by �̂�𝑐 the coefficient for short-term PM2.5 from the conditional logistic 8 
regression model and its corresponding standard error sê𝑐. The cumulative increase for each of the quantities above 9 
across the set of newly identified disease groups or the set of disease groups identified from previous studies that 10 
were significantly associated with each 1 μg·m-3 increase in lag 0–1 PM2.5 was  11 

∑ 𝑄𝑐[exp(�̂�𝑐) − 1]

𝑐∈𝑆

,    12 

with its 95% confidence interval estimate of  13 

(95% CI,    ∑ 𝑄𝑐[exp(�̂�𝑐) − 1]

𝑐∈𝑆

− 𝑧0.975 sêcum       −       ∑ 𝑄𝑐[exp(�̂�𝑐) − 1]

𝑐∈𝑆

+ 𝑧0.975sêcum), 14 

where  15 

sêcum = (∑ 𝑄𝑐
2 exp(2�̂�𝑐) sê𝑐

2

𝑐∈𝑆

)

1
2

 16 

according to the delta method assuming independence between hospital admissions, 𝑆 represents the set of newly 17 
identified disease groups or the set of disease groups identified from previous studies that were significantly 18 
associated with short-term PM2.5, 𝑧0.975 is the 97.5th percentile of a standard normal distribution, and 𝑄𝑐 corresponds 19 
to 𝑁𝑐 , 𝑁𝑐𝐿𝑐 , and 𝑁𝑐(𝐾𝑐 + 𝑃𝑐), respectively, for the calculation of annual increases in number of hospitalizations, 20 
days hospitalized, and healthcare costs (inpatient and post-acute). 21 

 22 

23 
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Section 6. Classification of principal discharge ICD-9 codes into 122 broader disease 1 

groups. 2 

In order to reduce the potential overlap of disease groups and diagnostic misclassifications, and provide more 3 
comprehensible results, we used another ICD-9 classification scheme, the 1st and 2nd levels of multi-level CCS, to 4 
categorize diagnoses broadly into 122 broader disease groups, excluding conditions in the perinatal period and 5 
complications of pregnancy that are biologically implausible for adults ≥65 years of age. Unlike the single-level 6 
CCS that we used in the main analysis, the multi-level CCS is has consecutive hierarchical levels with different 7 
numbers of higher levels (up to four).7 The corresponding ICD-9 diagnosis codes for each broader disease group can 8 
be found on Healthcare Cost and Utilization Project website.8  9 
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